

Divertor and Edge Physics program

Relationship to other programs
General program description
Transport
Neutrals
Impurities
High heat flux & particle handling

Presented by B. Lipschultz Contributions from B. LaBombard & J. Terry, T. Chung, O. Grulke, S. Lisgo

C-Mod in relation to other tokamaks

- C-Mod operation overlaps that of other tokamaks in edge/divertor dimensionless parameters w/different dimensional parameters
- Some of the differences in edge & divertor dimensional parameters are
 - Higher density (similar to ITER in divertor)
 - Higher divertor opacity to Ly α with diffusive neutrals (similar to ITER)
 - Higher parallel heat flux (300-500 MW/m², 3-5xother tokamaks, similar to ITER)
 - Higher SOL plasma pressures (similar than ITER)
- The range in dimensionless parameters can be different too
 - High collisionality ($\sim 1\text{--}4 \times v^*$ for other tokamaks and ITER)
 - Short $\lambda_{0,mfp}/\lambda_{SOL}$ & $\lambda_{0,mfp}/\lambda_{Div}$ (~ 2-4x less than other tokamaks, similar to ITER)
- Different scalings for neutral penetration may help unfold the roles of atomic and plasma physics
- Operation with Mo first wall makes an important contribution
 - ASDEX-U is gradually converting to W

C-Mod in relation to other tokamaks

• The C-Mod boundary research program complements work being done around the world

Research area	C-Mod	Other tokamaks
Plasma transport Turbulence imaging — Turbulence statistics — Radial flux analysis —	\rightarrow Probes, D_{α} =	→ NSTX, DIII-D (core) → DIII-D, JET → DIII-D, JET (by C-Mod)
Impurities (through 'lifecycle')	Mo sources, transport, screening, redeposition Mo physical sputtering	C sources, transport, screening, redeposition C chemical erosion
Neutral transport	main chamber recycling Compare w/div leakage Hydrogen and metals, B n-n collisions important	Emphasis on divertor effects, cryopump, T codeposition w/C Kinetic neutrals
ELM effect on SOL and divertor	Concentrating on small or no ELM regimes	Major program on DIII-D, JET

Relation to IPPA goals

The C-Mod boundary physics program addresses a number of issues listed in the IPPA document.

- 3.1.1 Turbulence and transport (3.1.1.1, 3.1.1.2, 3.1.1.3)
 - Advance the scientific understanding of turbulent transport, forming the basis for a reliable predictive capability in externally controlled systems
- 3.1.4 Plasma boundary physics (3.1.4.1, 3.1.4.2, 3.1.4.3)
 - Advance the capability to predict detailed multi-phase plasma-wall interfaces at very high power- and particle-fluxes.
- 3.3.1 Profile control (3.3.1.4, 3.3.1.5 low n_e divertor operation)
 - Assess profile control methods for efficient current sustainment and confinement enhancement in the advanced tokamak, consistent with efficient divertor operation, for pulse lengths much greater than energy confinement times.
- 3.4.1 Plasma technologies (3.4.1.3 Plasma facing components)
 - Develop enabling technologies to support the goals of the scientific program, including methods for plasma measurements,; develop plasma facing components....

C-Mod Boundary physics program

- Optimize the performance of fusion devices through
 - minimal core impurities (radiation, fuel dilution),
 - maximal first-wall lifetime, power handling
 - divertor design for optimal impurity/neutral compression and pumping
- To those ends we concentrate our research on
 - Edge plasma transport
 - Our primary emphasis because it is the determining factor for heat and particle loadings, impurity sources and transport
 - Neutral dynamics and fueling
 - Impurities
 - Develop predictive capability scaleable to reactor (ITER)
- We also identify and develop hardware and techniques for
 - Heat flux handling & density control

Edge Transport

Status

- Time-averaged profiles
 - Used to extract Γ_1 transport fluxes
 - Imply non-diffusive transport
- Turbulence studies
 - visualization techniques developed
 - turbulence dynamics & statistics characterized
- Numerical simulations
 - Matched some expt'l measurements
 - Time-averaged profiles specified, not predicted
 - Turbulence drive is ballooning-like
- Exploring connection to density limits
- SOL flows
 - strong, unexplained, but appear to be affecting the core

Goals/Program

- Explore transport scalings and role of plasma vs neutral physics
- Fully identify/characterize turbulence
 & role in transport
- Employ 1st principle simulations to reproduce
 - Turbulence characteristics
 - Time-averaged profiles
- Predict power/particle flux footprint on ITER divertors and wall
- Develop capability to modify radial transport
- Understand role of edge flows in transport (core and SOL)

Time-averaged SOL profiles and plasma flows

Goals

Determine relationships between time-averaged profiles and ...

- radial particle and heat fluxes
- poloidal variations in transport
- plasma flows
- scalings with plasma physics parameters
- role of atomic vs plasma physics

...important for predicting main-chamber wall interaction, divertor performance and impurity control in ITER

Methods

- Detailed SOL diagnostic set:
 - Langmuir-Mach probes at inner/outer SOL
 - Inner/outer array of tangential fiber views
 - Radially-resolved imaging of recycling light
 - extract radial transport fluxes

Remarkably similar far SOL transport on very different experiments

Plans

- MP submitted to DIII-D for H-mode plasmas
- Further analysis of JET data and new expts.
- Expand comparisons to other tokamaks
- Evaluate implications for ITER

Goal - empirical approach to characterize/understand transport

- provide scalings to BPX
- help determine underlying physics

 $\frac{\text{Method}}{\text{analysis}}$ - Γ_{\perp} from particle balance

Results (new from JET collab.)

- Transport in JET far SOL
 - Convective
 - Little dependence on v^* , ρ^* , β
 - Roughly invariant with machine size (a^{0.25})
- Neutral penetration likely playing a role in SOL profile shapes

Neutral penetration in ITER similar to C-Mod => broad far SOL?

Results

- Scale SOL transport results to ITER
 - Radial flux at second separatrix $\sim 10^{23}/s$
 - Wall/2nd divertor fluxes important
- Evaluate the transparency of the ITER SOL using SOL profiles from Kukushkin*
 - T_e and n_e are 'high'.
 - SOL opaque to neutrals, consistent with Kukushkin's work, like C-Mod.
 - Non-linear effect on n_e profile shape -> radial 'high recycling' condition?
 - Difficult to predict far SOL profiles

<u>Plans</u>

- Work with ITER modellers
 - Include far SOL v_{eff}
 - Include SOL out to limiters, beyond second separatrix.

^{*} A. Kukushkin et al., NF 43 (2003) 716.

Strong Transport Asymmetries => Strong Plasma Flows

New Results

- Direct measurements of inner/outer n, T_e profiles and flux tube variation of T_e in USN, DN, & LSN
 - quantifies poloidal heat/particle transport asymmetries
- Fluctuations are measured to be low in inner SOL, independent of topology
 - supports ballooning-like turbulence paradigm
- Near-sonic parallel flows at inner SOL with direction dependent on topology (USN, DN, LSN)
 - consistent with flows driven by ⊥ transport asymmetry

- Upgrade inner-wall scanning Mach probe
 - Mult. electrodes for flow & fluctuation analysis
- Develop spectroscopic flow measurements
 - He-II, BV CXRS

Transport-Driven SOL Flows and Magnetic Topology => Flow Boundary Conditions on Confined Plasma

New Results

- SOL flows appear to be affecting the core
 - Inner SOL flow momentum appears to couple across the separatrix to core toroidal rotation
 - Topology-dependent L-H power threshold may be caused by SOL flows
 - underlying drive ballooning-like edge turbulence

- Explore dependence on parameter ranges (n_e, I_p, B_t) , topology (SSEP), neutral effects, L-H power thresholds (MP363, MP375, MP384, MP385,...).
- Better flow measurements at & inside the separatrix
- Address missing physics in 2-D fluid codes
 - B2.5-Eirene (X. Bonnin IPP Greifswald)
 - UEDGE (A. Pigarov UCSD, M. Umansky -LLNL)

Quantum leap in camera capability leading to statistical analysis and understanding flows

Alcator C-Mod

Goals for turbulence studies

- Connect turbulence to transport...
- Simulations identify turbulence drive
- Simulations predict profiles
- Control turbulence & profiles

Methods

• Probes, "gas-puff-imaging" (GPI) with cameras & diode arrays.

New Results

- New movie camera (shared w/PPPL)
 - Gone from 28 to 300 frame movies
 - Radial & poloidal"blob" propagation
- L- and H- mode turbulence differences
- Poloidal flow direction dependent on magnetic topology
- Drive is ballooning-like (outer edge)

Plans - higher spatial resolution (<1mm),

- Size & velocity distribution analysis
- Image an L-to-H transition,
- Image an ELM event

Turbulence correlation along flux tube leads to new data about filament formation & propagation

Method

- Correlate fluctuations along a flux tube between probe $(\widetilde{J}_{SAT}, \widetilde{\Phi})$ & GPI diode array
- Probe insertion across flux tube connecting toroidally to diodes

Results

- Fluctuations correlate along a flux tube
- Probe (J_{SAT}, Φ) correlates with GPI diode array intensity fluctuations.
- n_e & Φ fluctuations: $\pi/2$ phase difference
- Dipole structure consistent with blob/filament creation & propagation.

Contours: emission (~n_e)

time (s) - also probe position

color scale: correlation of emission ($\sim n_e$) with Φ

Plans

Continued data analysis

"Filament" propagation analysis reveals radial propagation details

Alcator C-Mod

Goals

 Study positive ('blob') and negative ('hole') fluctuation propagation

Method

 Conditional averaging & cross-correlation of GPI diode emission measurements

Results

- Self-similar correlation shape
- Radially outward acceleration
- Velocity higher than DIII-D & previous movie measurements

- Study holes
- Add poloidal array of diode views (good statistics for radial AND poloidal velocity
- Improve spatial resolution (4 -> 2 mm)

New camera movies confirm probe picture of turbulence role in density limit

Alcator C-Mod

Goal

Understand the physics of the density limit

New Results

- Camera-measured turbulence mirrors probe results
 - Flat density region moves inside separatrix
 - Near SOL steep gradients disappear
 - Large convective heat losses depress T_e near separatrix
 - Turbulence moves inside separatrix
 - May lead to core thermal instability

Suggests shift in balance between perpendicular and parallel transport determines discharge density limit

Plans

 Compare turbulence characterisities to far Sol and pre-density limit.

Evidence for Electromagnetic Fluid Drift Turbulence Controlling Edge Plasma State

Background:

- Fully non-linear electromagnetic models of turbulence (Rogers, Drake, Scott, Hallatschek,...) identify 2 controlling parameters:
 - plasma β (α_{MHD} or $\hat{\beta}$)
 - collisionality (α_d or \hat{C})

New Results

- Edge pressure gradients scale with I_p^2 and map to a simple function of collisionality, when normalized according to electromagnetic fluid drift turbulence
- Strong endorsement that EMFD turbulence controls plasma transport near separatrix

- Finish data analysis and publish initial results
- Follow-up experiments:
 - extend parameter range ($B_t \rightarrow 8 \text{ tesla}$, $I_p \rightarrow 1.2 \text{ MA}$)
 - examine influence of x-point topologies, reversed B
 - characterize transport fluxes

Edge Fluctuation Statistics: New measures of turbulence dynamics

Alcator C-Mod

Goals

- Statistical properties of SOL turbulence
 - hope to predict turbulence dynamics & resultant transport in macroscopic sense
 - obviate need for details of instability

Method (Carreras and Antar)

- Long-time series samples of I_{sat} , V_f in SOL from stationary scanning probe
- correlations, intermittency, self-organization

Results

- *Isat* data: Near SOL shows power-law tail on 'quiet time' between bursts
 - robust indication of SOC dynamics
- Far SOL no SOC behavior

Plans (continued collaboration)

dependence on plasma parameters, spatial locations

Edge transport- numerical simulation

Collaborative Program provides close coupling to turbulence simulations/theory

• BOUT simulations (Umansky, Xu, Nevins, LLNL)

Results

- Experimental tests of BOUT predictions "Quasi-coherent" mode properties,
 X-pt effects, compare w/UEDGE
- Indicates resistive X-point turbulence drive

- Allow "virtual" diagnostics in simulation output (core & SOL)
- Make simulation output available to C-Mod staff
- Predict effects on impurities (are there impurity 'blobs' and 'holes'?)
- Stotler (PPPL)
 - continued modelling of atomic physics of gas-puff imaging diagnostic (3D)

Neutral Dynamics

- Determines fueling
- Determines capability to pump the divertor (specifically He)
- Can affect core performance (edge cooling)
- May play a role in edge plasma transport

Status

- Inherently 3D neutral distribution modeled - making progress
- Wall pumping/inventory being measured complex situation
 - D retention,
 - time scales,
 - 3D nature of neutral pressures and flows

Goals/Program

- 1st principle models reproduce observations
- Optimize C-Mod cryopump
- Understand the role of wall & geometry
- Predict level of wall pumping
- Understand differences between high-Z
 & low-Z wall

Plasma-plugging demonstrated for ITER-like divertor

Background:

- C-Mod divertor closest to ITER in q_{\parallel} , plasma & neutral pressures, opacity to $Ly\alpha$
- Neutral modelling of C-Mod divertor low by a factor of ~10 [Stotler (2002), Lisgo (2002)]
 - Neutral-neutral collisions?
 - neutral-plasma collisions?
 - plasma 'background' incorrect?
 - plasma plugging?
- Need C-Mod to modeled properly for ITER

New Results

- Gas conductances measured with and without plasma present using special capillaries/gauges
- Upper open divertor conductance
 - Reduced x2 by LSN plasma
 - Reduced x5 by USN, almost like closed divertor
- Lower diagnostic openings conductance
 - Reduced x4 by LSN plasma
- Data will serve to benchmark new 3D simulations
 - Lisgo (OSM-EIRENE), Stotler (DEGAS2)

In-situ gas conductance and plasma flow experiments [PSFC/RR-03-6]

Crucial benchmark against C-Mod divertor forces advance in divertor modelling

New Results

- OSM-Eirene (S. Lisgo) able to match C-Mod pressures within factor of 2
 - Plasma forced to match expt.
 - D_2 -> D_2 and D_2 -> D^+ critical*
 - recombination important*
 - 3-D geometry important
 - ExB flow circulation implied
 - *only ITER test of these effects

<u>Plans</u>

- S. Lisgo invited talk (PSI2004)
- D. Stotler to model 3-D neutral conductances in C-Mod divertor
- D. Reiter benchmark Eirenne radiation transport on C-Mod*

Neutral Density and Pressure Distributions [Lisgo (2003)]

Investigation of D/T retention in a high-Z tokamak is being pursued at MIT

Background

- More data is needed to predict level of T stored in ITER
- C-Mod provides part of high-Z experience

Old results (Wampler¹ tile analysis)

- D/B levels ~ 10 x lower than C tokamak
- D/Mo levels even lower.
- D retention NOT largest at inner divertor
- Fraction of fusion T retained < 0.2% without any specialized removal applied

- Exploring experiments/techniques to
 - Determine shot to shot wall-pumping,
 - Measure D deposition on tile sides (ITPA)
 - Measure in-situ D retention (w/Whyte/UW)

¹JNM 266-269 (1999) 217

Impurity transport

- Determines the core dilution/radiation
- Determines divertor power dissipation
- Determines pumping of He
- Plays a role in tritium codeposition

Status	Goals/Program	
 Modelling predictions uncertain 	 Improve characterization of underlying transport, radial, e.g. "holes" parallel 	
• Significant high-Z PFC experience		
 Wall sources are important because penetration to core is efficient 	Models reproduce experiment	
 RF effects can be important 	 Measure/characterize impurities at all points in their 'lifecycle' 	
	 Clarify important sources/sinks 	

Initial screening simulations reflect experiment

Goal

- Understand & control impurity
 - Sources
 - Erosion & depsoition
 - flows

Screening modelling (Chung, MIT)

- Penetration factor _____
 - (# reaching core)/(# launched)
 - Dependent on launch location
 - Dependent on density
 - Characteristics similar to experiments
 - Divertor better screened than main chamber

Plans

- Vary SOL characteristics to better match expt.
 - Flows
 - Strong radial transport

Penetration factor as a function of launch location

Erosion/redeposition studies from high-Z tokamak are important

Background

• C-Mod high-Z experience important for giving confidence in ITER W divertor.

Results

- Wampler¹ used markers to determine erosion
 - Mo erosion only at outer divertor
 - Consistent with spectroscopic and probe measurements and physical sputtering²

<u>Plans</u>

- Addition of Quartz Crystal Microbalances
 - Buying JET-developed QCMs (w/DIII-D)
- Exploring development of in-situ diagnostic
 - Measures erosion and deposition
- Potential for new marker tile measurements

¹JNM 266-269 (1999) 217 2Pappas et al, JNM 266-269 (1999)

High heat flux handling & density control

- Important for the success of the C-Mod program
- Supports ITER for high-Z experience

Status

- Presently 0.5 1.0 s pulse, 6 MW RF
 - melting at some divertor leading edges (shielded from the core)
- Energy deposited will increase
 - Power increase by $\sim x2$, 5 seconds
 - $\Delta T^{o} = q_{\perp} (W/m^{2}) \times \gamma_{Mo} \times (t(sec))^{0.5}$
 - ΔT increases by $\sim x4$
 - extrapolation => melting at strike points if nothing is done
- No pumping, but H-mode densities might be too high for AT

Goals/Program

- Develop improved surface temperature monitoring
- Extend divertor heat-handling capability (~x2)
- Test Tungsten-brush tiles
- Extend power dissipation techniques (efficacy, low-n_e)
- Cryopump operation

C-Mod continues to explore new concepts in particle and power control

- Based on our experience with SOL transport and neutral dynamics, we will investigate a new combined particle and power control operation...
 - Near double-null operation
 - Heat load to primary divertor
 - Particle pumping to secondary divertor
 - Cryopump on secondary divertor, outer leg
- Why? And what for?
 - Open divertor still 'plugged' by plasma
 - Radial fluxes are high, feeding 2nd divertor
 - Separates power and particle control functions
 - Simplifies each divertor design
- We also plan to use advanced divertor target materials (high Z)
 - Prototype tungsten brush modules (near term)

Tungsten brush tile development and testing part of the C-Mod program

Sample C-Mod W-brush tile

2.5 cm

- Tungsten brush tiles have been proposed for BPXs
 - shown to handle up to 20 MW/m² steady state
 - resists melt layer formation
 - no tokamak experience
- C-Mod is working towards W-brush tile installation and testing
 - based on original Sandia design
 - collaboration with Sandia
- C-Mod design aimed at
 - simplified construction and manufacture
 - maximization of W/support interface
- Plans
 - 2 different tile designs being manufactured & tested
 - \bullet plan for installation of \sim 5-10 tiles next vacuum break

Divertor and Edge Physics: Summary

- Our intent is to continue to make fundamental contributions with emphasis on the following:
 - Steady state profile transport analysis to understand
 - Poloidal variations, machine scalings (ITER) -> uncover underlying physics
 - Edge flows importance in core confinement and possibly L/H thresholds
 - Turbulence studies
 - Turbulence relationship to large convective transport
 - Improved images/analyses/scalings/simulations & predictive capability,
 - Control if possible
 - Develop predictive capability for ITER SOL and thus power flows to PFC surfaces
 - Measure and model the 3D aspects of neutral dynamics
 - Characterize impurities at every step in 'lifecycle' develop 'predictive codes'.
 - Develop separable divertor particle and heat control functions
 - Optimize high-Z first-wall and divertor for long-pulse & heat flux operation
- Providing vital support for overall physics program
 - Advanced Tokamak
 - Burning Plasma